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Abstract—This paper presents the tirst known results for free vibrations of thin, points-supported.
symetrically laminated trapezoidal composite plates. The solution method developed is based on
the Rayleigh-Ritz method and the admissible 2-D orthogonal polynomials to derive the governing
cigenvalue equation. The natural frequencies and mode shapes for the laminated plates are obtained
by solving this governing eigenvalue equation. Several test problems are solved to demonstrate the
accuracy and flexibility of the proposed method. The effects of fibee oricntations. points location
and the number of Tayers in the stacking scquences on the vibrational response for the plitte problems
are investigated. Variation of spring constants for the clastic points on the effect of the frequency
parameters is also considered.
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NOTATION

Young's moduli paradlel to and perpendicular to fibres

generating function

plate thickness

bending curvatures

moment resultants

plate domain

maximum kinetic eneryy
maximum strain energy
displacement function

Cartesian coordinates

plate aspect ratio (a'h)

fibre orientation angle

2-D orthogonal polynomial function
yib

constants (coetlicients)

frequency parameter {phe’at!D,)
density per unit area of plate
Poisson’s ratios

radian frequency

X'u

greatest integer function

1.

INTRODUCTION

In the open literature, rather few publications are available for vibration analysis of
thin symmetrically laminated quadrilateral plates except for the rectangular plates (Ashton
and Anderson, 1969; Whitney, 1971; Mohan and Kingsbury, 1971). As we know, the
analysis is considerably complicated and exact solutions are out of the question, therefore
approximate methods are employed for the solutions of these plate problems. A brief review
for the reactangular plate problems has been given by Leissa and Narita (1989).
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For plates other than rectangular shape, two papers are available. The vibration
analysis of single-layer composite skew plates was first studied by Nair and Durvasula
(1974). The formulation is bused on orthotropic plate theory with arbitrary orientation of
the principal axes of orthotropy. Approximate solutions for the frequencies and mode
shapes were obtained by the Rayleigh-Ritz method using the products of appropriate
beam characteristic functions as the admissible functions. The variation of frequencies and
mode shapes with orientation of the axes of orthotropy wus examined for different skew
angles and boundary conditions. The second available paper wus published by Srinivasam
and Ramachandran (1973). They presented a numerical method for tinding the natural
frequencies and mode shapes of single-layer parallel fibre tully clamped skew plates with
or without being subjected to in-plane forces. The numerical method emploved makes use
of integral equations of beams with appropriate boundary conditions along the skew
co-ordinates for transforming the governing differential equation into a set of algebraic
equations. Natural frequencies and mode shapes for several fully clamped skew plates
having different orientations of the axes of orthotropy were obtained by solving these
equations.

The present paper presents a general numerical method to study the transverse
vibration of symmetrically laminated trapezoidal plates with point constraints. The method
has been used in previous papers to study the vibration of isotropic and anisotropic
trapezoidal plates (Liew and Lam, 1990, 1991a,b). The analysis involves using a set of
2-D orthogonal polynomials as the admissible displacement function in the Rayleigh-Ritz
method to derive the governing eigenvalue equation. In this paper, the set of 2-D orthogonal
polynomials s further extended to study the aforementioned plate problems. The aim of
this paper is to provide a set of accurate results for the free vibration frequencies of these
symmetrically laminated points supported trapezoidal composite plates for which no exact
solutions are possible. Mode shapes for several laiminated composite plates are presented
by means of contour plots.

2. PROBLEM DEFINITION

Consider a thin, fibre-reinforced composite, laminated trapezoidal plate continuous
over point supports, lying in the x-p plane, and bounded by —«/2 £ x €2 and
=h/2 < v < B2, as shown in Fig. | The plate, with thickness #in the z-direction, consists
of nlayers ot orthotropic plies pertectly bonded together by a matrix material. The reference
plane - = 0 is considered o be located at the undetformed middle plane as shown in Fig. 2.
The fibre dircction within a layer is indicated by the angle 5. The moduli of elasticity for a
luyer parallel to the fibres is £ and perpendicular to the fibresis £,

3 METHOD OF SOLUTION

In the present study, the layers are so arranged that & mid-plane symmetry exists. By
these spectal symmetrical arrangements, coupling between transverse bending and in-plane
stretehing is solved. An attempt is made to solve the natural frequencies and mode shapes

JAL

Fig. 1. Geometry of a trapezodal plate with tibre direction - having point support located at (v, v,).
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Fig. 2. Layer co-ordinates and orientation for laminates.
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of these problems approximately by using the Rayleigh--Ritz approach with a sct of 2-D

orthogonal polynomials.

The strain energy due to bending can be expressed as

P =

(M) =M. M. M)

(K] = [K KK

e ;J J‘R[A\I][I\'] dxdy

where the integration is carried out over the entire plate domain R and

in which [M]is monment resultant and [K] is bending curvature.
The bending curvatures are related to the displacements by

K, ="

¥}

[
=~
=

For anisotropic materials, the moment resultants are given by

where [D] is a 3 x 3 symmetric matrix of bending stiffness cocflicients.

(M] = [D][K]

(4)

()

(6)

(M

For symmetric angle-ply laminates, the cocflicients of the bending stiffness matrix are

given by

k=

I m
D, = 3 Y (Vb= )i t=1,206.

®)

(V) are the reduced stiffness of the Ath ply which are defined by the elastic constants of
the layer and fibre oricntation angle fi,. (V). are given by
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Nit, = Quy, €08 B +2(Q 2, +2Q46,) sin” B cos® B+ Qs sin* B, 9)
Ny, =@, +0Q1:, —4066,) sin” B, cos” B, +Q,,, (sin* B, +cos* ) (10
N = Qyy, sin’ Bi+2(Q12, +2Q6s,) sin” §, cos’ B+ Q- cos® By (11)

Nig = (Q11,— Q12— Qoo sin fi c0s’ B +(Q 12, — @1z, + 2006, ) sin* S cos i (12)
N:(y, =(Qn, —Q,:k——ZQ“,‘)sin’ B cos Bi +(Q1:, — Q22 +2Q46,) sin i cos' B (13)

Neo, = (@11, + Q122 =205, — 2046 sin” By c0s” fi+ Qe (sin” i +cos* i) (14)

where
E!k -
! 5
g, pEr—— (13)
Vin B

Qi = T=viavs, (16)
L, ;

sy = - - [
Q:, I=vivy (7
Q(’l\‘ = GIIA (lx)
va B = vio By, (19)

in which £, and £, are the Young's moduli parallel to and perpendicular to the fibres
and v, and vy, are the corresponding Poisson’s ratios.
Substituting eqns (2)-(8) into eqn (1) results in

v I D >*wl 2D W AW b a*wl D QWO W
T e T ant teln ot &yt o oy’ 45 ax? ox v

W oW |
+4D:h[cg = -f ]+4th[i\ ,l] }d_\- dy. (20)
[ANANN

oyt éx éy :
If a plate with clastic point supports is considered, additional strain cnergy stored in
the vertical deflection springs exists. This additional strain energy is given by

P

Q .
Ve=3% Y (W(x.p)) (1)

“~r=l

where (x,. y,) are the locations of elastic point supports and p is the number of clastic point
constraints, ‘

The total maximum strain energy is obtained by summing the contributions from cqns
(20) and (21) resulting in

Vmu,\ = l/l + l”:. (22)

The maximum kinetic energy of the plate during small amplitude vibration is given by
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Trax = iphw? JJ‘ W3(x,y)dxdy
R

where p is the mass per unit area of plate, & is the thickness and w is the angular frequency

(23

of vibration.
The displacement function W (.n) may be expressed in terms of 2-D orthogonal

polynomials which is given by
WEn) =3 Co,En (29

y=1

where ¢ = x/a. n = y/b and C, are the unknown coefficients
22) and (23) results in

Substituting eq'n (24) into eqns (

¢y Co e

,/ __l Dll g=|
me = ] ) s

2D [ Z CO(Sn : Z C,o,(Sn) D o* Z Co,¢&m]
<l e=ld 4=1 22 =t
o ag? n? T e
40“' Z C,O, &) ¢ ,}: C,D,(E ]
a‘bh g‘ 7 (79 i r; -
L A
an,, ‘,Z: (,,‘b‘,(s-’l) ¢ '., ,Cv"’q(s.n)"
ab’ (71/2 dé (.’r;)‘ o
L i
ap. |5 L COLT
b6 g=1 )
5oy | AR - 2
ah’ ¢ on dodn+t 2 ,; .,Z" (€0, (&) (25)
phw?
T'm;u = —_;)'v’ J‘J‘R Z [C o (C ")] dS d" (26)
2 gt

By minimizing the encrgy functional (V. — T, ) With respect to each coefficient C,

J
= =1,2 2
OC ( may m‘.u) 0\ l[ l!‘-""a" (~7)
leads to the governing eigenvalue equation
Y (K,+S.L,-iM)C, =0, ij=12,...,n (28)
where the parameters S, and 4 are given by
Qa*
= 2
S, D, (29)
_ pho?a*
=D, (30)
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TR0 =v, v

0
in which

1 -
v =5 {Di(F,), +1‘D::(F4,'):+1'D13[(F,,)_\+([:,,)4]+2leb[(F”)5+(1."_i)6]
0

+22° D3 [(F)) 7 +(F))] + 427 Do (F,))}

P
Llj = Z (Dl(;:n 'Ir)(bj(;n "r)

r=1

M, = JJ G DS dE d.
R

(31

[K] and [L] are symmetrical matrices, and [Af] is a diagonal matrix. Equation (28)
forms a set of i xj homogene¢ous linear simultancous equations expressed in terms of the
unknown coefficients C,. For a non-trivial solution, the determinant of the coefficient matrix
is sct to zero. There are ¢ xj values of 4 that satisfy eqn (28), which are cach upper-bound

approximations to the exact frequencices,
Scveral terms on the right-hand side of eqn (32) need to be defined ; these are

W hE = A2 = ]
. OO ( ) o (& n) ;
(I"I)l = - R:? ;:2 o dg d"
JJrL 5 JbL s »
([ [0 ][, n]
(F)): = P R —-—’;/ 5 dé dy
JJdrl o JLon B
([ [ Em][a,En]
F), = -2 L2 dé dn
(Fs VA R E | R
rr —": - n _1: ¢ i
"®,(S.n) || 0, (S n)
= i || — — |d&d
(Fi)s JJIeL @& L oy’ s
re , s . -
G N (VR A ()
(Fl/)ﬁ = —"5’:—:"'"" "‘{Z‘i‘*{:“{"' dq dl]
JJr L 'S L ¢sen
([ [eoEn][ee,En] .,
(F,)o = D S5 dg g
JJRL Y ’ JLL [ _

([ [orw, ][ oEm] .
= —3TE e P20 ded
(F,)s ] m[ | o o Edn
f 22p (c m et z

UM (7 ) I | G R 7 ) N
; - PEMALIAUAN | NSRS FUICH|
([-r/)H J J; [ (-J;_‘ (1'1 1L (1,’_ ds n

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)
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&0, n)] [62‘»,(&. n)] .
, = S dé dn. 44
(£ ”R[ ésin c§in = et

4. ADMISSIBLE DISPLACEMENT FUNCTIONS

The displacement function W (Z, n) as given in eqn (24), is expressed in terms of a series
of 2-D orthogonal polynomials. The recurrence formula for 2-D orthogonal polynomials
tnvolves every other member in the set

m-—|
O, (5 ) =gn(EMOE M) — Y Uma®ul(m): m> 1 (45)

n=

where ¥, , is a constant and g,,(Z. ) is a generating function. The constant y,,, is given by

HR Gl P (S P, (. ) dS dny
‘//m.n =

< (46)
J J; (S mdS dy

By using this recurrence formula, the inner product of any two different members in the
scries satisfies the orthogonality condition

0 if
J f O, (E D, (2, ) dE diy = { HomEn (47)
R

1 if m=n

(i) Generating functions

The generating function g,,($, y) which are obtained empirically can be determined by
the following general procedures.

The parameters x, and x, are determined from the expressions

[Jm=11 (48)

X,

1, = (m—=1)—al. 49)

If 2, is an even number then the generating function is given by

gm(Ein) = &y (50)

where 2, is defined as
x;
=3, 0o <ay. (51)

On the other hand, if x, is an odd number then the generating function becomes
gm(Son) =&y (52)
where 2, now is defined as

('»':—l)_
= ?—.

2y | €o; €a,. 53

The symbol { ] adopted in eqn (48) denotes the greatest integer function.
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(it) Determinution of starting functions

The starting functions @, (3. n) chosen for the analysis must satisfy the prescribed
boundary conditions of the plate. In the present study. the starting functions are constructed
to satisty the geometrical boundary conditions since they are the only necessary requirement
for the admissible functions in the Rayleigh-Ritz method. The geometrical boundary
conditions are @, = 0 for simply supported edges, ®, = ¢®,;¢n = 0 for clamped edges and
no geometrical boundary condition exists for free edges.

For trapezoidal plate. the starting function is given by

O o) =[]tz (54)

=1

where (S, 1) are the edge functions.
By applying the appropriate boundary conditions. the edge functions for the edges can
be obtained. For the simply supported edges. the edge functions are given by

S—u foredges & =u
iy =<n=> foredgesny = h (55)
n—é—c foredgesn =mi+c
and the edge functions for the clamped edges are given by
(Z—a)’ foredges & =«
xS =< (n=h)° foredges y = h (56)
(n=mc—c)*  foredgesy = mi+c
and the edge functions for the free edges are given by
%) =1 (57)

5. NUMERICAL EXAMPLES

As we know, variation in ply orientation will alter the characteristic sitffness of plates.
To demonstrate this behaviour, several plates are studied. In this paper, the eigenvalues
obtained are expressed in terms of non-dimensional frequency parameters (pha’a®/ Dy)' 2.
The material used in the present analysis is the graphite cpoxy composite and the propertices
are given in Table 1.

5.1, Centrally-located point supports

The first set of problems treated is that of laminated cantilevered trapezoidal plates
(a'h = 1) having the edge clamped at 3 = /2. The plates are supported by an clastic point
located at the centre (x = 0. = 0).

The first example considered is an cight-ply laminated trapezoidal plate with the
stacking sequence of [(0 .90 ,90 ,0 )], having various values of the ¢/a ratio. Convergence
study 1s carried out for the plate having ratios ¢/'h =1 and c:a = 2/5. The convergence

Table |. Material properties of unidirectional composite

Muaterial £, (GPu) E, (GPa) G (GPa) vy,

GE (38 8.96 7.1 0.30
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Table 2. Convergence patterns of frequency parameters { phwa® D,)'?

for an eight-laver laminated centrally elastic point supported can-
tilevered trapezoidal plate (@ b= 1, ca=23) having a stacked
sequence of [(07,90 .90 .0 )],

Mode sequence number

S. Terms i 2 3 4 s 6
36 8.32 8.68 26.58 2753 d88l1 56.34

100 30 8.23 8.68 2658 26388 4870 5633
46 819 8.67 26.58  26.77 4865 36133
50 %19 8.67 26.38 2676 4865 5633
36 R.63 8.68 2658 2870 4893 S6.3d
40 8.53 8.68 26.58 2795 4883 5633

x 46 850 867 2658 2782 4880 5633
50 849 8.67 26,58 2781 4879 56.33

Table 3. Frequency parameters (pheo a®: D,)' © of an eight-layer fami-

nated unlr.xl]) elastic point supported cantilevered trapezoidal plate
(a'h = 1) with a stacking sequence of {(0 .90 90,0 )]

sm

Mode sequence number

cd S. | 2 3 4 S 6
{ 4.21 8.67 IR88 2658 3864 WYIR
10 6.52 8.67 2096 26,58 4197 9.3
100 819 8.67 26.58 26.76 48.65 5$6.33
= 1000 846 8.67 20,58 2770 4878 56.33
10000 8.49 8.67 26.58 2780 4879 56.33
oL 849 8.67 20,58 2781 4879 56.33
| 145 SN 1791 2094 22.66 416
10 SN S8 19.11 2094 25.55 RLEY)
45 100 S8 6.45 1971 2094 29501 K74
! 1000 518 6.67 19.79 2094 2099 4887
10000 5.18 6.69 19.79 2094 30.03 4888
s 5.18 6.6Y 19.79 20.94 30.04 48.88

patterns obtained for the plate are given in Table 2. It can be seen that S0 terms are
required to obtain the convergent results. The effect of spring constants upon the frequency
parameters of the plate is studied and the results are given in Table 3. Displacement contour
plots to represent the mode shapes of the plates with a centrally located rigid point support
having various ¢ja ratios are presented in Fig. 3.

AL P

N=8L8 ;=067 I, =126.58 =8 R=1879 Ns256.33
{a) c/a=2/5

=

[\ N =

=518 ;=669 H;=19.79 ,=20.94 X 23008 NWEER
(b} c/a=4/5

Fig. 3. Contour plots for the mode shapes of the eight-layer G/E centrally point supported
trapezoidal plates (@'h = 1) with stacking sequence of [0 .90 .90 .0 | .
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Table 4. Frequency parameters (phe’a® D,)' ° of a sixteen-laver lami-
nated centrally clastic point supported cantilevered trapezoidal plate
(a b = 1) with a stacking sequence of [(0 .43 . —45 .90 ).]\m

Mode sequence number

ca S. 1 2 3 4 3 6
| RCH .24 1770 3145 4349 4574
10 6.26 1126 2070 3146 4574 4794
- 100 3.3 11.28 2835 3155 34574 61.25
T 1000 863 .28 3041 3178 45374 61.29
10000 R.67 TL2R 3059 3185 4574 61.30
%L 867 PE2s R 86 4574 6130
| 12 698 1677 2365 2525 4615
10 521 699 (862 2378 2697 4621
15 100 6.81 7200 2092 2390 3796 46.60
. 10060 6.90 7430 21240 2392 4250 4710
10000 6.90 TAS 21280 2392 2910 4719
b 6.90 749 21280 2392 4295 4521

The second example considered is a sixteen-ply laminated trapezoidal plate with stack-
ing sequence of [(0 .45 0 —~45 /90 ).],,,. The effect on the vibrational response by increas-
ing the spring constants is investigated for the plate with ¢/a = 2/5 and 4/5. The results
obtained using 30 terms for the plate having various values of spring constants and ¢/a
ratios are given in Table 4. The first six mode shapes for the plate are also obtained and
presented in Fig. 4 together with the corresponding frequency parameters given below cach
mode. The mode shapes shown in Fig. 4 are obtained for the plate having a centrally located
rigid point support.

5.2, Point supports located on the edye

The sccond set of problems treated is that of laminated cantilevered trapezoidal plates
(afh = 1) with the clamped edge at v = — A 2 having point supports located at the opposite
corners of the clamped edge. Vibration analysis is carried out for these plates having
cfa =2/5 and 4 5 and the results for different ply oriented laminates are presented. The
point supports for the laminated trapezoidal plates located : (a) for ¢/a = 2/5 at x = —q/$5,
y=a/2 and at x =a/5, y=a’2, and (b) for ¢/a=4/5 at x = —2¢/S5, vy =a/2 and at
x=2a/5,y=al

SV Y Y Y=Y

=867 VERIF:) IN=3061 I =31.86 M=15.0L Ns=61.30

(@) c/a=2/5

dilabili ==

=690 ;=748 =08 e=nn IR =1295 K=
(b) c/a=4/5

Fig. 4. Contour plots for the mode shapes of the sixteen-layer G'E centrally point supported
trapezoidal plates (¢ b = 1) with stacking sequence of {(0 (45 . =45 .90 ) ],m.
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Table 5. Convergence patterns of frequency parameters (phw e’ D,)' 2

for an eight-laver laminated cantilevered trupezoidul plate (c.a=25)

having point supports located at x = —u 3, v =a 2 und at x = a3,
¥y =ua2(ab=1) with a stacking sequence ot [0 .90 .90 .0 |,

Mode sequence number

S. Terms I 2 3 4 N 6
36 12,14 1572 33093 4043 4227 3299

100 40 204 1572 3298 4003 4227 3243
46 12,14 1372 3293 4002 4227  S281
50 12,13 1372 3290 4001 2270827
16 12,19 1578 3340 4058 4256 532
40 1219 1578 3333 4019 42,56  53.06

* 46 1218 1578 3330 40,07 4256 353.02
50 12,18 1578 3327 40.16 4256 S3.00

Table 6. Frequency parameters (pher’a’ D,)' * of an eight-layer lami-
nated cantilevered trapezoidal plate (¢ b = 1) having elastic point sup-
ports located: (1) at x = —g 5, y=ua 2 and at x=al, y=al
(cja=25) or (i) at x=—-2a.5 y=a2and at x=2a35, v=a?l
(c'a=435)witha smckmg sequence of [0°,90 90 0 lym

Mode sequence number

ca S. { 2 3 4 5 6
1 R68 1234 2020 3065 3842 4963
[0 11.69 1822 2980 3922 3981 51.52
N 100 1203 1372 3290 dool 4227 5279
= 1000 1208 1878 3324 d00s 4253 S29%
DO 12008 1578 3327 3016 4256 S3.00
v 12,19 1578 3327 d0.l6 4256 53.00

l 645 1040 1SS 24370 2446 3676

10 8400 1324 I8S2 0 2069 3293 4292
100 X80 Pded  INSN O 27000 35858 44014
1000 88y 1369 1839 2705 3588 4426
10000 8§84 13e9  IR3Y 2705 3591 4427
£ 884 1369 1830 27105 3592 4427

45

The first example considered is an eight-ply laminated trapezoidal plate with the
stacking sequence of [0°,907,90,0 .. A convergence study for the plite with a/b = 1
and ¢/a = 2/5is carried out and the convergence patterns ohl.um.d from the study are given
in Table 5. It is observed that for a plate with clastic constant S, = 100 and <, 50 terms

Y.V-Y:¥.

D=1 N=15.78 =127 =106 Ing= 1256 Ing=52.00
la) c/a=2/5

— = o

%, =8.8L Ng=13.69 ;21859 =211 N=35.9 M=l
b) c/a=4/5

Fig. 5. Contour plots for the mode shapes of the cight-layer G:E points supported trapezoidal plates
(a;h = 1) with stacking sequence of 0,90 ,90 0],
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Tuble 7. Frequency parameters (phor"a® D)1 7 of a sixteen-laver lami-

nated cantilevered trupezowdal plate (v b = {) having elastic point sup-

ports located: (1) at x= —¢ 3 y=u2 and at x=a 5 y=ul

fea=25or(iatx=-2a5 y=ulund at x=2u3 r=al
to u =4 3) with a stacking sequence of [t (45 . =45 90 1)

Mode sequence number

cd AY | 2 3 4 3 6

t B3IS 1377 2001 3402 4540 d653
to 1127 17.35 0 2905 4210 4347 SLs6
{00 PLe8 1825 3260 4530 4556 558

.
3000 1173 (835 3300 4543 4382 3629
10000 FE73 0 I8.37 0 3304 4543 4585 5635

" 1073 IR37 3305 4543 4585 5636

1 644 110D 1708 2601 2796 3644

0 896 1471 (7K1 3325 3543 4727

s 100 943 {540 (799 3593 3786 47.63

1006 943 1547 800 3625 3844 4768
10000 948 1548 1801 3629 MW.le 4768
x 948 1S48 (R0 36,20 3817 47.68

are needed to obtain the required convergent results, For this set of problems, it is decided
to use 5O terms for all the caleulations. An investigation s carried out to study the effect
of the spring constant on the vibrational response of the plate. The results obtained from
this study are given in Table 6. The study shows that as the spring constant increases to a
very large value (8 2 10000), the plate becomes rigidly supported. The mode shapes
obtained for the plate resting on nigid point supports are presented in Fig. 5. The cor-
responding frequency purameters for cach mode shape are also given,

The second example considered s w sixteen-ply [aminated trapezoidal plate with the
stucking sequence of {(0 45 . 45 ,907) ],,,. The etfect of the spring constant on the first
six frequency parameters for the plates having ¢/a = 2/5 and 4/5 is studied. The results
obtained by using 50 terms are given in Table 7‘ It is obvious that the spring constants
increase with an increase in frequency parameters until S, = 1000, beyond which no sig-
atficant increase in the frequency parameters is observed. The mode shapes for the rigid
points (S, = 10000) supported cantilevered trapezoidal plate having ¢/e = 2/5 and 4/5 are
presented in Fig. 6 together with the corresponding frequency parameters given below cuch
mode.

2AAA

=10 =137 H=13.05 X =543 VR =15.85 IN256.36
{a) ¢/a=2/5

=948 =548 Ix= 8.0 =629 =317 INg=11.68
{b) c/a=4/5

Fig. 6. Contour plots for the mode shapes of the sixteen-layer G E points supported trapezoidal
plates (@ b = 1) with stacking sequence of {0 45 0 ~45 90 1.,
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6. CONCLUSIONS

The proposed sets of 2-D orthogonal polynomials for approximating the deflection
shape make the application of the Rayleigh-Ritz method relatively easy to implement
for free vibration analysis of symmetrically laminated. points supported. thin trapezoidal
composite plates. Several plate problems, results for which are unavailable tn the open
literature. are solved to show the applicability of the present method. The natural frequencies
for the problems are presented for the plates having different tibre orientations. location of
points and number of layer in the stacking sequences. The effect of spring constants on the
vibrational response for the plates is also investigated.
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